
www.manaraa.com

 RESEARCH PAPERS

INTRODUCTION

In the recent time, the amount of data being generated is 

rapidly evolving from terabytes to many petabytes. The 

traditional data processing tools available, fail to handle 

the large data size. The tools are evolving to overcome the 

inadequacies existing and provides a solution to manage 

and process massive volumes of heterogeneous data. 

The current technologies support to manage large data 

storage, processing, analyzing, effective decision 

making, etc. When the size of the data increases the 

network traffic will also increase as well.

The High Performance Computing (HPC) and Grid 

computing [1], [2] have been adopted for large scale 

data processing. The idea implemented in HPC is to work 

with the cluster of machines and access a shared 

distributed file system. This is especially used for highly 

computational intensive jobs. The issue in the above 

computing approach is network bandwidth.

If the network traffic develops largely, network bandwidth 

is restricted, and hence computing nodes in the high 

performance cluster become idle. The HDFS (Hadoop 

Distributed File System) is a distributed file system 

constructed to run on commodity hardware. It has many 

features similar to other distributed computing. HDFS is 

designed to provide more fault-tolerance and to deploy 

on low-cost hardware. It is also designed to process and 

manage massive volumes of heterogeneous data. The 

Hadoop can store, analyze and process large volumes of 

data. Also, Hadoop has capacity of large system, fault-

tolerance, scalability, and availability.

MapReduce [3] is a software framework used to write 

applications that process large amounts of data in 

parallel on clusters of commodity hardware.

A MapReduce job first divides the data into individual 

chunks which are processed by Map jobs in parallel. The 

outputs of map sorted by the framework are then input to 

the reduce tasks. In general, the input and the output of 

the jobs are both stored in a file system. The MapReduce 

online is a modified version of Hadoop [4] MapReduce, 

which supports online aggregation and reduces response 

time. This approach has the advantage of simple 

recovery in the case of processing into two phases: (a) 

Map phase and (b) Reduce phase. A map uses a 

common partitioner records that is partitioned into 

EFFECTIVE REDUCTION OF NETWORK TRAFFIC COST IN MAP 
REDUCE FOR VERY LARGE SCALE DATA APPLICATIONS

By

ABSTRACT

The MapReduce programming model provides an exciting opportunity to process massive volumes of heterogeneous 

data using map and reduce tasks in parallel. In the recent time, a number of efforts has been made to improve the 

performance of the job’s execution. The performance of the job’s execution can be improved further by considering the 

network traffic. In this paper, an optimistic distributed algorithm is proposed to deal with the significant optimization 

problem for handling large size data. The optimistic distributed algorithm is more efficient than the distributed algorithm. 

Finally, simulation results show that the proposal can significantly reduce network traffic cost.

Keywords: Aggregator, Big Data, Hadoop, Hash Table, MapReduce, Optimistic Distributed Algorithm.

* Research Scholar, Department of Computer Science and Engineering, Sreenivasa Institute of Technology and Management Studies, A.P., India.
** Professor, Department of Computer Science and Engineering, Sreenivasa Institute of Technology and Management Studies, A.P., India.

*** Associate Professor, Department of Computer Science and Engineering, Sreenivasa Institute of Technology and Management Studies, A.P., India.

K. REDDAMMA * D. JAGADEESAN **

Date Received: 27/01/2017 Date Revised: 15/03/2017 Date Accepted: 08/05/2017

T. VIVEKANANDAN ***

14 i-manager’s Journal o  Computer Science, n l lVol. 4  No. 4  December 2016 February -  2017



www.manaraa.com

 RESEARCH PAPERS

hashed buckets [9], [10]. Reduce reads from every 

mapper for one designated partition, use the same hash 

function records from these partitions are grouped and 

aggregated using a hash table.

1. Related Work

Blanca and Shin [4] have proposed “Optimizing network 

usage in MapReduce Scheduling”. In this paper, they 

introduced a technique called NUM (Network Utilization 

Monitoring). It maintains a high network utilization and low 

network congestion. Palaniswamy, Singh, Liu, and Jain [5] 

have proposed MapReduce resource allocation system. 

It is used for reducing network traffic generated in the 

cloud data center.

Costa, Donnelly, Rowstron, and O’ Shea [6] have 

proposed Camdoop, instead of increasing the 

bandwidth; it focuses on decreasing the network traffic by 

pushing aggregation from the edge into the network. 

Camdoop significantly reduces the network traffic and 

provides high performance increases over a version of 

Camdoop running over a switch and against two 

production systems.

Condie, et al., [7] have proposed a modified MapReduce 

architecture that allows data to be pipelined between 

operators. Pipeline parallelism is a new option for 

improving performance of MapReduce jobs, but needs 

to be integrated intelligently with both intra-task partition 

parallelism and speculative redundant execution for 

straggler handling.

In the recent time, IT industry built data-center-scale-

computing systems to meet high storage and processing 

demands of data-intensive applications. Chen and 

Schlosser [8] in their work, have reported a desirable 

feature to improve the MapReduce model for data 

intensive applications. F. Ahmad, et al., [9] have proposed 

MapReduce with Communication Overlaps (MaRCO) to 

achieve nearly full overlap via these novel ideas of 

including reduction in the overlap.

2. Problem Identification

The MapReduce process consumes more bandwidth, and 

hence it generates the network traffic. In the existing 

approach, the distributed algorithm is used for traffic aware 

partition and aggregation is implemented with non- 

negative values for analysis. In this paper, the authors have 

proposed an optimized distributed algorithm to solve the 

above problem and minimize the network traffic.

3. Proposed Architecture

The data intensive task uses data parallelism approach to 

process massive volumes of data in terms of terabytes 

and petabytes. The amount of data size is increasing as a 

result, the network traffic also increases. The data 

management and analysis of data is time consuming. 

This may vary for different machines. The conventional 

data management system fails to handle the enormous 

volumes of data. The MapReduce programming model 

in Hadoop framework is designed to process massive 

volume data using large clusters of commodity hardware 

that are highly fault tolerant and reliable. The 

performance of job execution in the MapReduce model 

can be improved further by considering network traffic.

Figure1 shows the architecture proposed for minimization 

of network traffic in the MapReduce model. The processes 

are split into three modules. They are Mapping, 

Aggregation, and Reduction.  First, the user has to define 

the reducer location for optimizing the data transfer 

locations (Figure 2). Then the user has to upload the 

massive volumes of data in HDFS (Hadoop Distributed File 

System). The aggregation intention is to obtain more 

information about particular groups based on specific 

variables, such as location, year, frequently used words, 

profession, or age.  The aggregator is used after 

completion of mapped jobs and before sending to 

reducer as the first stage of minimizing network. This 

aggregator reduces the traffic and finally sents to reducer 

for the output of the data.

The proposed work “Effective Reduction of Network Traffic 

Cost in MapReduce for Very Large Scale Data 

Applications” is implemented in the following phases:

Figure 3 shows the overview of MapReduce program 

execution. A MapReduce program has three main 

components, viz., a driver class, a mapper class, and a 

reducer class (package org.apache.hadoop. 

mapreduce). The basic driver initializes the job 

15li-manager’s Journal o  Computer Science, Vol.  No. n  4 l4  December 2016 February -  2017



www.manaraa.com

 RESEARCH PAPERS

configuration, defines the mapper and the reducer and 

specifies the paths of the input and output files(s) for the 

MapReduce program.

Figure 4 illustrates the process of MapReduce and 

Aggregation. Three main functions were used to obtain 

the optimized data.

3.1 Mapping Function

In mapper function, map tasks are performed in parallel 

that splits input data into intermediate data in the form of 

key value pairs. These key value pairs are stored on the 

local machine and organized into multiple data 

partitions. The map is a user-defined function, which takes 

a series of key value pairs and processes, where each one 

of them to generate zero or more key value pairs.

MAP(): Generates the intermediate key and value based 

on input key and input value.

3.2 Reducing Function

In reducer function (Figure 5), each reduce task fetches its 

data as data partitions from all map tasks to generate the 

final result. The Reducer takes input on the grouped key 

value paired data and executes a reducer function on 

each one of them. At this point, the data can be 

aggregated, filtered, and combined in a number of ways, 

and it requires an extensive range of processing. Once 

Figure 1. Architecture for Minimization of
Network Traffic for MapReduce Model

Figure 2. Defining the Reduce Location

Figure 3. Overview of MapReduce Execution

Figure 4. MapReduce Process

16 i-manager’s Journal o  Computer Science, n l lVol. 4  No. 4  December 2016 February -  2017



www.manaraa.com

 RESEARCH PAPERS

the processes are over, it produces zero or more pairs in 

the final.

Reduce(): Multiple reducers can run in parallel and the 

number of reducers is specified by the user. Output key will 

contain the key output from the reducer and output value 

will contain the value that is output for that particular key.

3.3 Aggregator Function

In aggregator function, each aggregator can reduce 

merged traffic from multiple map tasks. Figure 6  shows 

the result of the aggregator function.

4. Proposed Algorithm

Optimized Distributed Algorithm:

The steps in the algorithm is as follows.

1. t = 1 and Lagrangian multiplier (v j) to uninformed p

values;

2. repeat step 3 to 5 until  t < T

3. distributively solve the sub problem on multiple 

machines in a parallel.

4. update the values of (v j) with the conjugate gradient p

method, and send the results to all subproblems;

5. t = t +1

4.1 Flow Diagram

As shown in the data flow diagram (Figure 8), the four 

activities are 

·Identify the location, 

·Load the data  from the mapper, 

·Using MapReduce function and placing aggregator 

to reduce traffic  

·Analyze  the result.  

All these levels or activities are explained briefly in the 

system architecture (Figure 1).

5. Simulation Results

The simulation is carried out using the MapReduce 

programming model in Hadoop and Java programming. 

In this paper, the authors have evaluated the 

performance of the network traffic cost by using the 

optimistic distributed algorithm. These properties make 

Figure 5. Reducer Function

Figure 6. Aggregator Function Figure 8. Network Traffic Cost versus Map Tasks

Figure 7. Flow Diagram

17li-manager’s Journal o  Computer Science, Vol.  No. n  4 l4  December 2016 February -  2017



www.manaraa.com

 RESEARCH PAPERS

them attractive for many real time systems and 

applications. The performance of the optimistic 

distributed algorithm is better than the distributed 

algorithm. The results of network traffic with map tasks of 

the optimistic distributed algorithm is mentioned below.

Figure 7 illustrates Network traffic cost versus the number of 

keys from 1 to 60. In this figure, HNA stands for Hash-based 

partition with No Aggregation, HRA stands for Hash-based 

partition with Random Aggregation, DA stands for 

Distributed Algorithm, and ODA means Optimized 

Distributed Algorithm.

Conclusion

In this paper, the authors have studied the optimization of 

intermediate data partition and aggregation for reduced 

the network traffic cost for large size data applications. 

They have proposed an optimized distributed algorithm to 

deal with the large-scale data. Finally, simulation results 

show that their proposal can significantly reduce network 

traffic cost. Furthermore, they planned to extend the 

algorithm to handle the MapReduce job in a Hadoop 

Multimode cluster.

References

[1]. Ian Foster, Carl  Kesselman, and Steven Tuecke, 

(2001). “The Anatomy of the Grid: Enabling Scalable 

Virtual Organizations”. International Journal of High 

Performance Computing Applications, Vol.15, No.3, 

pp.200-222.

[2]. Shaik Naseera, T. Vivekanandan, and K.V. Madhu 

Murthy, (2008). “Data Replication using Experience Based 
thTrust in Data Grid Environment”. In Proceedings of 5  

International Conference on Distributed Computing and 

Internet Technology, Springer-Verlag, Heidelberg, 

Vol.5375, pp.39-50.

[3]. MapReduce introduction. Retrieved from”. http://www. 

tu to r ia l spo in t.com/map_reduce/map_reduce_ 

introduction. htm

[5]. B. Palaniswmy, A. Singh, L. Liu, and B. Jain, (2011). 

“Purlieus: locality-aware resource allocation for 

MapReduce in a cloud”. In Proceedings of 2011 

International Conference for High Performance 

Computing, Networking, Storage and Analysis. ACM, 

p.58.

[6]. P. Costa, A. Donnelly, A. I. Rowstron, and G. O'Shea, 

(2012). “Camdoop: Exploiting in-network Aggregation for 

Big Data Applications”. In NSDI, Vol.12, pp.1-14.

[7]. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. 

Gerth, J. Talbot, K. Elmeleegy, and R. Sears, (2010). 

“Online Aggregation and Continuous Query support in 

MapReduce”. In Proceedings of the 2010 ACM SIGMOD 

International Conference on Management of Data, 

ACM, pp.1115-1118.

[8]. S. Chen and S. W. Schlosser, (2008). “Map-Reduce 

Meets Wider Varieties of Applications”. Intel Research 

Pittsburgh, Tech. Rep. IRP-TR-08-05.

[9]. F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar, 

(2013). “MapReduce with Communication Overlap”. 

Journal of Parallel and Distributed Computing, Vol.73, 

No.5, pp.608-620.

[10]. Wikispaces (n.d.). Map Reduce. Retrieved from 

https://hadooptutorial.wikispaces.com/MapReduce

[4]. A. Blanca and S.W. Shin, (n.d.). Using Network 

Bandwidth Smartly in MapReduce Scheduling. Retrieved 

from http://www.cs.berkeley.edu/~kubitron/courses/ 

cs262a-F13/projects/reports/project7_ poster.pdf

18 i-manager’s Journal o  Computer Science, n l lVol. 4  No. 4  December 2016 February -  2017



www.manaraa.com

 RESEARCH PAPERS

ABOUT THE AUTHORS

K. Reddamma is a Research Scholar in the Department of Computer Science and Engineering at Sreenivasa Institute of 
Technology and Management Studies, Chittoor, India. She obtained her Bachelor's Degree in Computer Science and 
Engineering from Sri Venkateswara College of Engineering, Tirupati, India. Also she obtained her Master's Degree in Computer 
Science and Engineering from Sreenivasa Institute of Technology and Management Studies, Chittoor, India. His current research 
interest is Big Data.

Dr. D. Jagadeesan is currently working as a Professor in the Department of Computer Science and Engineering at Sreenivasa 
Institute of Technology and Management Studies, Chittoor, India. He obtained his Bachelor's Degree in Computer Science and 
Engineering from Anna University, Chennai, Tamil Nadu, India. He obtained his Master's degree in Computer Science and 
Engineering from Dr. M.G.R University at Chennai, Tamil Nadu, India. He obtained his Ph.D in Computer Science and Engineering 
at Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (SCSVMV University), Kanchipuram, Tamil Nadu, India. He is Life 
Member of the ISTE and a Member of the IEEE. He is specialized in Networking, Mobile Ad-hoc Network, Compiler Design and 
Computation Theory. His current research interests are Route Recovery in MANET, Mobile Routing Protocols, Mobile 
Heterogeneous Network, Network Security, Big Data, and e-Agriculture.

T. Vivekanandan is currently working as an Associate Professor in the Department of Computer Science and Engineering at 
SITAMS, Chittoor, India. He has 12 years of teaching experience and 2 years of industrial experience. He has published papers in a 
reputed National and International Journals and Conferences besides a life member in the Indian Society for Technical Society 
(ISTE) and Computer Society of India (CSI). His research interest, includes Data Analytics in e-Healthcare, Big Data Analytics, High 
Performance Computing (HPC), Cloud and Grid Computing. 

19li-manager’s Journal o  Computer Science, Vol.  No. n  4 l4  December 2016 February -  2017



www.manaraa.com

Reproduced with permission of copyright owner.
Further reproduction prohibited without permission.


	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

